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2 LAMSADE, CNRS, PSL, Université Paris-Dauphine, Paris, France
lang@lamsade.dauphine.fr

Abstract. Classical voting rules assume that ballots are complete pref-
erence orders over candidates. However, when the number of candidates
is large enough, it is too costly to ask the voters to rank all candidates.
We suggest to fix a rank k, to ask all voters to specify their best k candi-
dates, and then to consider “top-k approximations” of rules, which take
only into account the top-k candidates of each ballot. We consider two
measures of the quality of the approximation: the probability of select-
ing the same winner as the original rule, and the score ratio. We do a
worst-case study (for the latter measure only), and for both measures,
an average-case study and a study from real data sets.

Keywords: Voting rules · Truncated ballots · Approximations.

1 Introduction

The input of a voting rule is usually a collection of complete rankings over
candidates (although there are exceptions, such as approval voting). However,
requiring a voter to provide a complete ranking over the whole set of candidates
can be difficult and costly in terms of time and cognitive effort. We suggest to
ask voters to report only their top-k candidates, for some (small) fixed value of k
(the obtained ballots are then said to be top-k). Not only it saves communication
effort, but it is also often easier for a voter to find out the top part of their
preference relation than the bottom part. However, this raises the issue of how
usual voting rules should be adapted to top-k ballots. Reporting top-k ballots is
a specific form of voting with incomplete preferences, and is highly related to vote
elicitation. Work on these topics is reviewed in the recent handbook chapter [5].
Existing work on truncated ballots can be classified into two classes according
to the type of interaction with the voters:

(i) Interactive elicitation
An interactive elicitation protocol asks voters to expand their truncated ballots
in an incremental way, until the outcome of the vote is eventually determined.
This line of research starts with Kalech et al. [14] who start by top-1 ballots,

c© Springer Nature Switzerland AG 2020
N. Bassiliades et al. (Eds.): EUMAS 2020/AT 2020, LNAI 12520, pp. 279–298, 2020.
https://doi.org/10.1007/978-3-030-66412-1_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-66412-1_18&domain=pdf
https://doi.org/10.1007/978-3-030-66412-1_18


280 M. Ayadi et al.

then top-2, etc., until there is sufficient information for knowing the winner. Lu
and Boutilier [16,17] propose an incremental elicitation process using minimax
regret to predict the correct winner given partial information. A more general
incremental elicitation framework, with more types of elicitation questions, is
cost-effective elicitation [25]. Naamani Dery et al. [10] present two elicitation
algorithms for finding a winner with little communication between voters.

(ii) Non-interactive elicitation
The central authority elicits the top-k ballots at once, for a fixed value of k, and
outputs a winner without requiring voters to provide extra information. A possi-
bility consists in computing possible winners given these truncated ballots: this
is the path followed by Baumeister et al. [2] (who also consider double-truncated
ballots where each voter ranks some of her top and bottom candidates). Another
possibility – which is the one follow – consists in generalizing the definition of
a voting rule so that it takes truncated ballots as input. In this line, Oren et
al. [21] analyze top-k voting by assessing the values of k needed to ensure the
true winner is found with high probability for specific preference distributions.
Skowron et al. [23] use top-k voting as a way to approximate some multiwin-
ner rules. Filmus and Oren [12] study the performance of top-k voting under
the impartial culture distribution for the Borda, Harmonic and Copeland rules.
They assess the values of k needed to find the true winner with high probability,
and they report on numerical experiments that show that under the impartial
culture, top-k ballots for reasonable small values of k give accurate results.

Bentert and Skowron [3] focus on top-k approximations of voting rules that
are defined via the maximization of a score (positional scoring rules and max-
imin). They evaluate the quality of the approximation of a voting rule by a top-k
rule by the worst-case ratio between the scores, with respect to the original pro-
file, of the winner of the original rule and the winner of the approximate rule.
They identify the top-k rules that best approximate positional scoring rules (we
give more details in Sect. 5). Their theoretical analysis is completed by numeri-
cal experiments using profiles generated from different distributions over prefer-
ences: they show that for the Borda rule a small value of k is needed to achieve
a high approximation guarantee while maximin needs more information from a
sufficiently many voters to determine the winner.

Ayadi et al. [1] evaluate the extent to which STV with top-k ballots approx-
imates STV with full information. They show that for small k, top-k ballots are
enough to identify the correct winner quite frequently, especially for data taken
from real elections. Finally, the recognition of singled-peaked top-k profiles is
studied in [15] while the computational issues of manipulating rules with top-k
profiles is addressed in [20].

Our contribution concerns non-interactive elicitation. We adapt different vot-
ing rules to truncated ballots: we define approximations of voting rules which
take as input the top-k candidates of each ballot. The question is then, are these
approximations good predictors of the original rule? We answer this question by
considering two measures: the probability that the approximate rule selects the
‘true’ winner, and the ratio between the scores (for the original rule) of the true
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winner and the winner of the approximate rule. For the latter measure we give
a worst-case theoretical analysis. For both measures we give an empirical study,
based on randomly generated profiles and on real-world data. Our findings are
that for several common voting rules, both for randomly generated profiles and
real data, a very small k suffices.

Our research can be seen as a continuation of Filmus and Oren [12]. We
go further on several points: we consider more voting rules; beyond impartial
culture, we consider a large scope of distributions; we study score distortion;
and we include experiments using real-world data sets. Our work is also closely
related to [3], who have obtained related results independently (see Sects. 4 and
5 for a discussion).

Our interpretation of top-k ballots is epistemic: the central authority in
charge of collecting the votes and computing the outcome ignores the voters’
preferences below the top-k candidates of each voter, and has to cope with it
as much as possible. Voters may very well have a complete preference order in
their head (although it does not need to be the case), but they will simply not
be asked to report it.

Section 2 gives some background. Section 3 defines top-k approximations of
different voting rules. Section 4 analyses empirically the probability that approx-
imate rules select the true winner. Section 5 analyses score distortion, theoreti-
cally and empirically.

2 Preliminaries

An election is a triple E = 〈N,A, P 〉 where: N = {1, ..., n} is the set of voters,
A is the set of candidates, with |A| = m; and P = (�1, ...,�n) is the preference
profile of voters in N , where for each i, �i∈ P is a linear order over A. Pm is
the set of all profiles over m alternatives (for varying n).

Given a profile P , NP (a, b) = # {i, a �i b} is the number of voters who prefer
a to b in P . The majority graph M(P ) is the graph whose set of vertices is the
set of the candidates A and in which for all a, b ∈ A, there is a directed edge
from a to b (denoted by a → b) in M(P ) if Np(a, b) > n

2 .
A resolute voting rule is a function f : E → A. Resolute rules are typically

obtained from composing an irresolute rule (mapping an election into an non-
empty subset of candidates, called co-winners) with a tie-breaking mechanism.

A positional scoring rule (PSR) fs is defined by a non-negative vector s =
(s1, ..., sm) such that s1 ≥ ... ≥ sm and s1 > 0. Each candidate receives sj points
from each voter i who ranks her in the jth position, and the score of a candidate
is the total number of points she receives from all voters i.e. S(x) =

∑n
i=1 sj .

The winner is the candidate with highest total score. Examples of scoring rules
are the Borda and Harmonic rules, with sBorda = (m − 1,m − 2, . . . , 0) and
sHarmonic = (1, 1/2, . . . , 1/m).

We now define three pairwise comparison rules.
The Copeland rule outputs the candidate maximizing the Copeland score,

where the Copeland score of x is the number of candidates y with x → y in
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M(P ), plus half the number of candidates y �= x with no edge between x and y
in M(P ).

The Ranked Pairs (RP) rule proceeds by ranking all pairs of candidates
(x, y) according to NP (x, y) (using tie-breaking when necessary); starting from
an empty graph over A, it then considers all pairs in the described order and
includes a pair in the graph if and only if it does not create a cycle in it. At the
end of the process, the graph is a complete ranking, whose top element is the
winner.

The maximin rule outputs the candidates that maximize minx∈A(x�=a)

NP (a, x).
For the experiments using randomly generated profiles, we use the Mallows

φ-model [18]. It is a (realistic) family of distributions over rankings, parametrized
by a modal or reference ranking σ and a dispersion parameter φ ∈ [0, 1]:
P (r;σ, φ) = 1

Z φd(r,σ), where r is any ranking, d is the Kendall tau distance
and Z =

∑
r′ φd(r,σ) = 1 · (1 + φ) · (

1 + φ + φ2
) · ... · (

1 + ... + φm−1
)

is a nor-
malization constant. With small values of φ, the mass is concentrated around
σ, while φ = 1 gives the uniform distribution Impartial Culture (IC), where all
profiles are equiprobable.

3 Approximating Voting Rules from Truncated Ballots

Given k ∈ {1, ...,m − 1}, a top-k election is a triple E′ = 〈N,A,R〉 where N
and A are as before, and R = (�k

1 , ...,�k
n), where each �k

i is a ranking of k out
of m candidates in A. R is called a top-k profile. If P is a complete profile, �k

i

is the top-k truncation of �i (i.e., the best k candidates, ranked as in �i), and
Pk = (�k

1 , ...,�k
n) is the top-k-profile induced from P and k. A top-k (resolute)

voting rule is a function fk that maps each top-k election E′ to a candidate in
A. We sometimes apply a top-k rule to a complete profile, with fk(P ) = fk(Pk).
We now define several top-k rules.

3.1 Borda and Positional Scoring Rules

Definition 1. A top-k PSR fs
k is defined by a scoring vector s =

(s1, s2 . . . , sk, s∗) such that s1 ≥ s2 ≥ ... ≥ sk ≥ s∗ ≥ 0 and s1 > s∗. Each
candidate in a top-k vote receives sj points from each voter i who ranks her
in the jth position. A non-ranked candidate gets s∗ points. The winner is the
candidate with highest total score.

When starting from a specific PSR for complete ballots, defined by scoring
vector s = (s1, . . . , sm), two choices of s∗ particularly make sense:

– zero score: s∗ = 0
– average score: s∗ = 1

m−k (sk+1 + . . . + sm)

We denote the corresponding approximate rules as f0
k and fav

k . Bordaav
k is known

under the name average score modified Borda Count [8,13], while Borda0
k is
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known under the name modified Borda Count [11]). In the experiments we report
only on Bordaav

k , as Borda0
k gives very similar results.

Young [24] characterized positional scoring rules by these four properties,
which we describe informally (for resolute rules):

– Neutrality : all candidates are treated equally
– Anonymity : all voters are treated equally
– Reinforcement : if P and Q are two profiles (on disjoint electorates) and x is

the winner for P and the winner for Q, then it is also the winner for P ∪ Q.
– Continuity : if P and Q are two profiles and x is the winner for P but not for

Q, adding sufficiently many votes of P to Q leads to elect x.

f is a PSR if and only if it satisfies neutrality, anonymity, reinforcement and
continuity [24].

These four properties still make sense for truncated ballots. It is not difficult
to generalize Young’s result to top-k PSR:

Theorem 1. A top-k voting rule is a top-k PSR if and only if it satisfies neu-
trality, anonymity, reinforcement, and continuity.

Proof. The left-to-right direction is obvious. For the right-to-left direction, let
us first define the top-k-only property: a standard voting rule is top-k-only if for
any two complete profiles P, P ′, if Pk = P ′

k, then F (P ) = F (P ′). Then (1) a
positional scoring rule F is top-k-only if and only if sk+1 = . . . = sm (if this
equality is not satisfied, then it is easy to construct two profiles P , P ′ such that
Pk = P ′

k and F (P ) �= F (P ′)). Now, assume Fk is a top-k rule satisfying neu-
trality, anonymity, reinforcement, and continuity. Let F be the standard voting
rule defined by F (P ) = Fk(Pk). Clearly, F also satisfies neutrality, anonymity,
reinforcement, and continuity, and due to Young’s characterization result, F is
a PSR, associated with some vector (s1, . . . , sm). Because F is also top-k-only,
using (1) we have sk+1 = . . . = sm, therefore, Fk is a top-k-PSR. 
�

3.2 Rules Based on Pairwise Comparisons

Given a truncated ballot �k
i and two candidates a, b ∈ A, we say that a domi-

nates b in �k
i , denoted by a >k

i b, if one of these two conditions holds: (1) a and
b are listed in �k

i , and a �k
i b; (2) a is listed in �k

i , and b is not.
For instance, for A = {a, b, c, d}, k = 2, and �2

i = (a � b), then a dominates
b, both a and b dominate c and d, but c and d remain incomparable in �2

i . Now,
the notions of pairwise comparison and majority graph are extended to top-k
truncated profiles in a straightforward way:

Definition 2. Given a top-k profile R, NR(a, b) = #
{
i, a >k

i b
}
is the number

of voters in R for whom a dominates b. The top-k majority graph Mk(R) induced
by R is the graph whose set of vertices is the set of the candidates A and in which
there is a directed edge from a to b if NR(a, b) > NR(b, a).
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The top-k rules Copelandk, Maximink and RPk are defined exactly as their
standard counterparts, but starting from the top-k pairwise comparisons and
majority graph instead of the standard ones. Note that fm−1 = f , and (for all
rules f we consider) f1 coincides with plurality.

Example 1. Let us consider this 62-voter profile: 20 votes a � d � c � b, 10
votes b � c � d � a, 15 votes c � d � b � a and 17 votes: d � c � a � b.

a b c d MP

a - 20 20 10 10
b 10 - 10 10 10
c 42 32 - 25 25
d 32 52 37 - 32

(b) Maximin2(a) Copeland2

Fig. 1. Top-2 approximations of Copeland and Maximin

Figure 1 (a) shows the top-k majority graph and the Copeland winner for k =
2, and Fig. 1 (b) shows the top-k pairwise majority matrix and the Maximink

winner for k = 2. In both cases, the winner for k = 1 (resp. k = 3) is a (resp.
d). For RP, the winner under RPk for k ∈ {1, 2, 3} is the same as the winner
under Copelandk since the k-truncated majority graph does not create cycles.

4 Probability of Selecting the True Winner

The first way of measuring the quality of the top-k approximations is to deter-
mine the probability that they output the ‘true winner’; that is, the winner of
the original voting rule, under various distributions (Subsect. 4.1) and for real-
world data (Subsect. 4.2). In both cases, the procedure is similar: given a voting
rule f , we consider many profiles, and for each profile P we compare f(P ) to
fk(Pk) for each k = {1, . . . , m−2}. The difference between Subsects. 4.1 and 4.2
is that in the former we randomly draw profiles according to a given distribu-
tion, and for the latter, we draw a profile by selecting n votes at random in the
database. We include in our experiments STVk rule defined by Ayadi et al. [1],
which takes top-k ballots as input; and we compared it to our truncated rules.
STVk proceeds as follows: in each round the candidate with the smallest number
of votes is eliminated (using a tie breaking when necessary), if all ranked can-
didates are eliminated by STV, the vote is then ’exhausted’ and ignored during
further counting.

4.1 Experiments Using Mallows Model

Here we follow the research direction initiated by Filmus and Oren [12], but we
consider more rules, and beyond Impartial Culture we also consider correlated
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distributions within the Mallows model. For each experiment we draw 1000 ran-
dom preference profiles. In the first set of experiments, we take m = 7, we let
n and φ vary, and we measure the accuracy of the approximate rule for k = 1
and k = 2. Results are reported on Table 1. Note that for k = 1, our results can
be viewed as answering the question: with which probability does the true winner
with respect to the chosen rule coincide with the plurality winner?

Table 1. Success rate, Mallows model: m = 7, varying n, k and φ.

φ n=100 n=200 n=300 n=400 n=500 n=100 n=200 n=300 n=400 n=500

Bordaav
1 Bordaav

2

0.7 0.902 0.958 0.986 0.992 1.0 0.951 0.98 0.992 1.0 1.0

0.8 0.77 0.855 0.9 0.94 0.963 0.853 0.913 0.956 0.972 0.986

0.9 0.588 0.694 0.685 0.718 0.771 0.772 0.805 0.827 0.846 0.873

1 0.434 0.445 0.424 0.422 0.397 0.576 0.56 0.586 0.598 0.584

Copeland1 Copeland2

0.7 0.908 0.968 0.991 0.994 1.0 0.947 0.99 1.0 1.0 1.0

0.8 0.736 0.847 0.891 0.934 0.949 0.822 0.904 0.952 0.984 0.982

0.9 0.497 0.567 0.655 0.684 0.726 0.62 0.69 0.77 0.805 0.838

1 0.325 0.332 0.323 0.343 0.319 0.458 0.432 0.45 0.442 0.425

Maximin1 Maximin2

0.7 0.908 0.969 0.986 0.99 1.0 0.968 0.991 1.0 1.0 1.0

0.8 0.787 0.856 0.915 0.939 0.955 0.872 0.934 0.961 0.976 0.977

0.9 0.57 0.633 0.691 0.717 0.748 0.735 0.76 0.794 0.838 0.869

1 0.415 0.4 0.423 0.393 0.391 0.52 0.532 0.544 0.545 0.525

Harmonic1 Harmonic2

0.7 0.941 0.986 0.996 1.0 1.0 0.98 0.992 1.0 1.0 1.0

0.8 0.895 0.916 0.958 0.959 0.968 0.958 0.974 0.987 0.988 0.996

0.9 0.805 0.808 0.83 0.866 0.863 0.895 0.921 0.934 0.939 0.952

1 0.725 0.742 0.74 0.697 0.737 0.872 0.867 0.859 0.861 0.859

RP1 RP2

0.7 0.926 0.972 0.995 0.995 1.0 0.963 0.994 1.0 1.0 1.0

0.8 0.778 0.856 0.908 0.939 0.957 0.871 0.928 0.967 0.983 0.989

0.9 0.587 0.64 0.674 0.718 0.749 0.725 0.765 0.777 0.838 0.862

1 0.426 0.405 0.416 0.375 0.385 0.558 0.524 0.557 0.498 0.519

STV1 STV2

0.7 0.907 0.981 0.985 0.998 1.0 0.959 0.993 0.997 1.0 1.0

0.8 0.808 0.865 0.917 0.918 0.943 0.882 0.933 0.962 0.966 0.974

0.9 0.603 0.64 0.721 0.729 0.763 0.742 0.776 0.792 0.855 0.846

1 0.45 0.464 0.477 0.471 0.468 0.576 0.593 0.61 0.592 0.585

For k = 1: when n ≤ 100 and φ ≤ 0.7, prediction reaches 90% for Borda,
Copeland, Maximin and STV, 92% for RP, and 94% for Harmonic. When n ≥
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500, the accuracy is perfect for all rules. For φ = 0.8, the success rate decreases
but results are still good with a large number of voters. For φ = 0.9 and n = 500,
the rate reaches 86% for Harmonic and 72% for Copeland, with intermediate
(and similar) results for Borda, Maximin and RP and STV. For the IC, the
rate decreases dramatically when k becomes small, except for Harmonic (73%
when n = 500 against 46% for STV, 31% for Copeland and 40% for the remaining
rules).

For k = 2: the probability of selecting the true winner reaches 100% (resp.
98%) when φ ≤ 0.7 (resp. φ ≤ 0.8) and n ≥ 400 (resp. n ≥ 500). With high
values of φ, Harmonic still outperforms other rules followed by Bordaav and
STV then the other rules. Consistently with the results obtained by Bentert and
Skowron [3] for the IC, approximating the maximin rule is harder than position
scoring rules where maximin needs more information from the voters in order
to obtain high approximation guarantees. In all cases, top-2 ballots seem to be
always sufficient in practice to predict the winner with 100% accuracy with a
low value of φ.

In the second set of experiments, we are interested in determining the value
of k needed to predict the correct winner with large elections and with high
value of φ. We take k = {1, ...,m}, n = 2000, φ = {0.9, 1} and m = 20. Figure 2
shows depicted results where 1000 random preference profiles are generated for
each experiment. Results suggest that in large elections and unless φ is very high
(φ = 0.9), top-k rules are able to identify the true winner when k = 6 (resp.
k = 8) for Harmonic (resp. the remaining rules) out of m = 20.

We can also observe the behavior of different truncated rules when φ = 0.9:
the best accuracy is obtained again by Harmonic and the accuracy of all other
rules are very close, which we found surprising. When φ = 1, the latter behavior
changes: Harmonic still has the best results, followed by Bordaav and STV,
then the remaining rules. The good performance of Harmonic in all cases can be
explained by the fact that the closer the scoring vector to plurality, the better
the prediction.

Next, for each value of n ∈ {1000, 2000}, φ ∈ {.7, .8, .9, 1}, and m ∈
{7, 10, 15, 20}, we generated 1000 random profiles, and for each of our rules,
we determined the minimal value k (as a function of m) such that the winner is
correctly determined from the top-k votes for all generated profiles. The results
for Bordaav are:

– for φ = 0.7, k = 1 is always sufficient, whatever m.
– for φ = 0.8, k = 2 (resp. k = 1) is always sufficient for n = 1000 (resp.

n = 2000), whatever the value of m.
– for φ = 0.9, we observe that the minimal value of k such that the correct

winner is always correctly predicted is around 7
10m (for n = 1000) and 2

5m
(for n = 2000).

– for φ = 1, the minimal value of k is m − 1: we always find a generated profile
for which we get an incorrect result if the profile is not complete.

The results for Copeland, maximin, RP and STV are similar to those for
Borda. For Harmonic, we observe that k = 1 is always sufficient for φ ≤ 0.8 and
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Fig. 2. Success rate, Mallows model: n = 2000, m = 20, varying φ and k.

n = 2000, and that for φ = 0.9 (resp. φ = 1), the value of k needed is around
1
3m (resp. 2

3m).
In order to see how our approximations behave with small number of voters

and a high dispersion parameter, we take k = {1, ...,m}, n = 15, m = 7, and
φ ∈ {0.9, 1}. The results are on Fig. 3. The worst performance is obtained with
Copeland, while the other rules perform more or less equally well. These results
are consistent with the results obtained by Skowron et al. [23] for multiwinner
rules: elections with few voters and high dispersion appear to be the worst-
case scenario for predicting the correct winner using top-truncated ballots. For
Harmonic, even with few voters, winner prediction is almost perfect when k = 4
and m = 7.

Fig. 3. Success rate, Mallows model: m = 7, n = 15, varying φ and k.
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4.2 Experiments Using Real Data Sets

We now consider real data set from Preflib [19]: 2002 election for Dublin North
constituency with 12 candidates and 3662 voters. We consider data where we
randomly sample n∗ voters among the n available votes (n∗ < n). We start with
n∗ = 10 and increment n∗ in steps of 10. In each experiment, 1000 random
profiles are selected with n∗ voters; then we consider the top-k ballots obtained
from these profiles, with k = {1, 2, 3} and we compute the probability of selecting
the correct winner (the winner of the complete profile of then n∗ sampled votes).
Figure 4 shows results for Dublin with small elections (n∗ = {10, ..., 100}) while
Fig. 5 presents results for large elections (n∗ = {100, ..., 2000}). Arrows indicate
the number of voters from which the prediction is perfect.

Consistently with the results of Fig. 3, for small elections; the success rate is
low when k is too small, except for Harmonic where it gives the best performance
followed by STV (especially when n∗ < 60) then the remaining rules, e.g. For
Harmonic (resp. STV), 92% (resp. 82%) accuracy is reached with k = 3, m = 12
and n∗ = 50 against around 75% for the remaining rules.

Fig. 4. Success rate, Dublin, varying k; n∗ = {10, . . . , 100}.
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For large elections, when k = 1, the different approximations exhibit almost
the same behavior except Harmonic, that performs better especially with few
voters. Obviously, increasing the value of k leads to a decrease in the number of
voters needed for correct winner selection. In general, the different approxima-
tions needs a sufficient number of voters to converge to the correct prediction.
Scoring rules tend to require less voters.

Fig. 5. Success rate, Dublin, varying k; n∗ = {100, . . . , 2000}.

5 Measuring the Approximation Ratio

5.1 Worst Case Study

In order to measure the quality of approximate voting rules whose definition
is based on score maximization, a classical method consists in computing the
worst-case approximation ratio between the scores (for the original rule) of the
‘true’ winner and of the winner of the approximate rule. Using worst-case score
ratios is classical: they are defined for measuring the quality of approximate
voting rules [7,22], for defining the price of anarchy of a voting rule [6] or for
measuring the distortion of a voting rule [4].
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Worst-case score ratios particularly make sense if the score of a candidate is
meaningful beyond its use for determining the winner. This is definitely the case
for Borda, as the Borda count is often seen as a measure of social welfare (see
[9]). This worst-case score ratio is called the price of top-k truncation.

Definition 3. Let f be a voting rule defined as the maximization of a score S,
and fk a top-k approximation of f . The price of top-k-truncation for f , fk, m,
and k, is defined as: R(f, fk,m, k) = maxP∈Pm

S(f(P ))
S(fk(Pk))

.

Positional Scoring Rules: Let fs be a positional scoring rule defined with
scoring vector s. Assume the tie-breaking priority favors x1. Let f s̄

k be a
top-k approximation of fs, associated with vector s̄ = (s1, . . . , sk, s∗), with the
same tie-breaking priority. Let s′ = (s1 − s∗, . . . , sk − s∗, 0) = (s′

1, . . . , s
′
k, 0), i.e.,

s′
i = si−s∗ for i = 1, . . . , k. Obviously, f s̄

k = fs′
k . For instance, if f s̄ is the average-

score approximation of the Borda rule, then s̄ = (m − 1, . . . , m − k, m−k−1
2 ) and

s′ = (m − 1 − m−k−1
2 , . . . ,m − k − m−k−1

2 , 0).
Let S(x, P ) be the score of x for P under fs and S′

k(x, Pk) be the score of
x for Pk under fs′

k . From now on when we write scores we omit P and Pk, i.e.,
we write S(x) instead of S(x, P ), S′

k(x) instead of S′
k(x, Pk) etc. In the rest of

Subsect. 5.1 we assume k ≥ 2. Let x1 = fs′
k (Pk) and x2 = fs(P ).

Lemma 1. R(fs, fs′
k ,m, k) ≤ 1 − sk+1

s′
1

+
(
1 + s∗

s′
1

)
msk+1

s′
1+...+s′

k

Proof. The total number of points given to candidates under fs′
k is n(s′

1+. . .+s′
k),

therefore S′
k(x1) ≥ n

m (s′
1 + . . . + s′

k).
Let us write S(x2) = S1→k(x2) + Sk+1→m(x2), where S1→k(x2) (resp.

Sk+1→m(x2)) is the number of points that x2 gets from the top k (resp. bottom
m − k) positions of the ballots in P . Let γ be the number of ballots in which x2

is not in the top k positions. Then Sk+1→m(x2) ≤ γsk+1.
As x2 appears in at least S′

k(x2)
s′
1

top-k ballots, we have γ ≤ n− S′
k(x2)
s′
1

. More-
over we have S(x1) ≥ S1→k(x1) = S′

k(x1) + ns∗ ≥ S′
k(x2) + ns∗ = S1→k(x2).

Now,
S(x2) ≤ S1→k(x2) +

(
n − S′

k(x2)
s′
1

)
sk+1

≤ S1→k(x2) +
(
n − Sk(x2)−ns∗

s′
1

)
sk+1

≤ (1 − sk+1
s′
1

)S1→k(x2) + nsk+1 + ns∗sk+1
s′
1

≤ (1 − sk+1
s′
1

)S(x1) + nsk+1 + ns∗sk+1
s′
1

S(x2)
S(x1)

≤ 1 − sk+1
s′
1

+ nsk+1(1 + s∗
s′
1
) m

n(s′
1+...+s′

k)

≤ 1 − sk+1
s′
1

+ sk+1(1 + s∗
s′
1
) m

s′
1+...+s′

k


�
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We now focus on the lower bound. We build the following pathological com-
plete profile P such that:

– the winner for Pk (resp. P ) is x1 (resp. x2).
– in Pk, all candidates get the same number of points (x1 wins thanks to tie-

breaking), and x1 and x2 get all their points from top-1 positions.
– in P , the score of x1 is minimized by ranking it last everywhere where it was

not in the top k positions, and the score of x2 is maximized by ranking it in
position k + 1 everywhere where it was not in the top k positions.

– Pk is symmetric in {x3, . . . , xm}.

Formally, Pk is defined as follows:

1. for each ranked list L (resp. L′) of k − 1 (resp. k) candidates in {x3, . . . , xm}:
α votes x1L and α votes x2L (resp. β votes L′). α and β will be fixed later.

2. α and β are chosen in such a way that all candidates get the same score S′
k(.).

Now, P is obtained by completing Pk as follows:

1. each top-k vote x1L is completed into x1Lx2−. “−” means the remaining
candidates are in an arbitrary order.

2. each top-k vote x2L is completed into x2L − x1.
3. each top-k vote L′ is completed into L′x2 − x1.

For instance, for m = 5 and k = 3, P is as follows:

α x1x3x4x2x5

α x1x3x5x2x4

α x1x4x3x2x5

α x1x4x5x2x3

α x1x5x3x2x4

α x1x5x4x2x3

α x2x3x4x5x1

α x2x3x5x4x1

α x2x4x3x5x1

α x2x4x5x3x1

α x2x5x3x4x1

α x2x5x4x3x1

β x3x4x5x2x1

β x3x5x4x2x1

β x4x3x5x2x1

β x4x5x3x2x1

β x5x3x4x2x1

β x5x4x3x2x1

Let M = (m−3)!
(m−k−1)! and Q = (m−2)!

(m−k−1)! .

Lemma 2.
S′

k(x1) = S′
k(x2) = α(m − 2)s′

1M

and for i ≥ 3, S′
k(xi) = 2α(s′

2 + . . . + s′
k)M + β(m − k − 1)(s′

1 + . . . + s′
k)M

Proof. In Pk, x1 and x2 appear in top position in a number of votes equal to α
times the number of different permutations (ordered lists) of (k − 1) candidates
out of (m − 2), i.e. α (m−2)!

(m−k−1)! times. Thus S′
k(x1) = S′

k(x2) = α (m−2)!
(m−k−1)!s

′
1. For

similar reasons, for each i ≥ 3,

S′
k(xi) = 2α (m−3)!

(m−k−1)! (s
′
2 + · · · + s′

k) + β (m−3)!
(m−k−2)! (s

′
1 + · · · + s′

k).


�
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As a consequence, all candidates have the same score in Pk if and only if

β

α
=

(m − 2)s′
1 − 2(s′

2 + . . . + s′
k)

(m − k − 1)(s′
1 + . . . + s′

k)

We fix α and β such that this equality holds. Thanks to the tie-breaking
priority, the winner in Pk is x1. In P , the winner is x2 and the scores of x1 and
x2 are as follows:

Lemma 3.

S(x1) = Qαs1
S(x2) = Qαs1 + Qαsk+1 + Q(m − k − 1)βsk+1

Proof. x1 appears at the top of (m−2)!
(m−k−1)!α votes and at the bottom of all others,

hence S(x1) = Qαs1. x2 appears α (m−2)!
(m−k−1)! times top position, and in position

(k + 1) in the remaining votes, i.e., α (m−2)!
(m−k−1)! + β (m−2)!

(m−k−2)! . Thus

S(x2) = α (m−2)!
(m−k−1)! (s1 + sk+1) + β (m−2)!

(m−k−2)!sk+1 
�
Lemma 4. R(fs, fs′

k ,m, k) ≥ 1 − sk+1
s1

+ sk+1
s1

ms′
1

s′
1+...+s′

k

Proof. From Lemma 3 we get S(x2)
S(x1)

≥ 1 + sk+1
s1

+ (m − k − 1) sk+1
s1

β
α .

Finally, using the expression of β
α we get

S(x2)
S(x1)

≥ 1 + sk+1
s1

+ (m − k − 1) sk+1
s1

(m−2)s′
1−2(s′

2+...+s′
k)

(m−k−1)(s′
1+...+s′

k)

From this we conclude:

R(fs, fs′
k ,m, k) ≥ 1 + sk+1

s1
+ sk+1

s1

(m−2)s′
1−2(s′

2+...+s′
k)

s′
1+...+s′

k

≥ 1 + sk+1
s1

+ sk+1
s1

(m−2)s′
1+2s′

1−2(s′
1+...+s′

k)
s′
1+...+s′

k

≥ 1 + sk+1
s1

+ sk+1
s1

(
ms′

1
s′
1+...+s′

k
− 2

)

≥ 1 − sk+1
s1

+ sk+1
s1

ms′
1

s′
1+...+s′

k 
�
Putting Lemmas 1 and 4 together we get

Proposition 1.

1 − sk+1
s1

+ sk+1
s1

ms′
1

s′
1+...+s′

k
≤ R(fs, fs′

k ,m, k) ≤ 1 − sk+1
s′
1

+
(
1 + s∗

s′
1

)
msk+1

s′
1+...+s′

k

Note that the lower and upper bound coincide when s∗ = 0, giving a tight
worst-case approximation ratio for this class of approximations. This is however
not guaranteed when s∗ > 0 (the reason being that the pathological profile used
in the proof of Lemma1 may not be the worst). Moreover, when s∗ = 0, our
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(lower and upper) bound coincides with the optimal ratio given in [3] (Theorem
1).1 Since the ratio in [3] is shown to be the best possible ratio, this show that
taking s∗ = 0 gives an optimal top-k approximation of a positional scoring rule.2

In particular:

– for Borda0
k (si = m − i, s∗ = 0), the lower and upper bounds coincide and

are equal to k
m−1 + 2m(m−k−1)

k(2m−k−1) .
– for Bordaav

k (si = m − i, s∗ = m−k−1/2), the lower bound is 1 − m−k−1
m−1 +

(m−k−1)(m+k−1)
k(m−1) and the upper bound is k(3k−m+1)+4(m−k−1)(m−1)

k(m+k−1) .
– for Harmonic0k (si = 1/i, s∗ = 0), the lower and upper bounds are equal to

k
k+1 + m

(k+1)(1+ 1
2 ···+ 1

k )
.

Also, note that for k′-approval with k′ > k and s∗ = 0, the (exact) worst-
case ratio m

k does not depend on k′. As a corollary, we get the following order
of magnitudes when m grows:

– R(Borda,Borda0
k,m, k) = Θ

(
m
k

)
.

– R(Borda,Bordaav
k ,m, k) = Θ

(
m
k

)
.

– R(Harmonic,Harmonic0k,m, k) = Θ
(

m
k log k

)
.

Maximin: Let Maximin be the Maximin rule with tie-breaking priority
x1 . . . xm, and Maximink be the k-truncated version of the Maximin rule with
the same tie-breaking priority order. Let SMm(x2, P ) and SMm(x1, Pk) be the
Maximin scores of x2 and x1 for P and Pk, respectively, with SMm(x2, P ) =
miny �=x2 NP (x2, y) and similarly for Pk. Let P be a profile, and let x1 =
Maximink(Pk) and x2 = Maximin(P ). All candidates have the same Maximin
score in Pk, therefore, by tie-breaking priority, Maximink(Pk) = x1.

Lemma 5. R(Maximin,Maximink,m, k) ≤ m − k + 1.

Proof. Because x1 = Maximink(Pk), we must have SMm(x1, Pk) ≥ 1 (oth-
erwise we would have SMm(x1, Pk) ≥ 0, meaning that x1 does not belong to
any top-k ballot, and in this case we cannot have x1 = Maximink(Pk)). Now,
SMm(x2, P ) ≤ SMm(x2, Pk) + (m − k) ≤ SMm(x1, Pk) + (m − k), therefore,

SMm(x2,P )
SMm(x1,P ) ≤ SMm(x1,Pk)+(m−k)

SMm(x1,Pk)

≤ m − k + 1

�

Lemma 6. R(Maximin,Maximink,m, k) ≥ m − k.
1 Note that the ratios in our paper are the inverse of the ratios in [3]. That is, the

inverse of the ratio given in Theorem 1 of [3] coincides with our ratio for s∗ = 0.
2 Interestingly, [3] give another optimal rule (thus with same worst-case ratio), which

is much more complex, and which is not a top-k PSR. Comparing the average ratio
of both rules is left for further study.
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Proof. We consider the cyclic profile Cyc:

Cyc P (m = 5, k = 2)
x1 x2 . . . m − 1 m
x2 x3 . . . m x1

x3 x4 . . . x1 x2

. . . . . . . . . . . .
m x1 . . . m − 2 m − 1

x1 x2 x3 x4 x5

x2 x3 x4 x5 x1

x3 x4 x2 x5 x1

x4 x5 x2 x3 x1

x5 x1 x2 x3 x4

Now, let P be obtained from Cyc by the following operations for every vote
in Cyc:

– if x1 is not in the top k positions in the vote, we move it to the last position
(and move all candidates who were below x1 one position upward)

– if x2 is not in the top k positions in the vote, we move it to the (k + 1)th

position (and move all candidates who were between position k + 1 and 2’s
position one position downward).

For instance, for m = 5, k = 2, we get the profile P above.
Maximin(P ) = x2, and the Maximin scores of x1 and x2 in P are:

SMm(x1, P ) = 1 and SMm(x2, P ) = m − k.

Hence SMm(x2,P )
SMm(x1,P ) = m − k. 
�

Proposition 2. m − k ≤ R(Maximin,Maximink,m, k) ≤ m − k + 1.

This worst-case ratio is quite bad, except if k is close to m. However, arguably,
the maximin score makes less sense per se (i.e., as a measure of social welfare)
than a positional score such as the Borda count.

Copeland: Again, for the Copeland rule, the ratio makes less sense, because
the Copeland score is less meaningful as a measure of social welfare.3 Still, for
the sake of completeness we give the following result:

Proposition 3. R(Copeland,Copelandk,m, k) = ∞.

Proof. Let P be the following profile:

– Pk contains two votes x1x2 . . . xk, and one vote L for each ordered list of k
candidates among m.

– P is obtained by completing Pk by adding x1 (resp. x2) in last position (resp.
in position k + 1) when it is not in the top-k positions.

In Pk, the winner for Copelandk is x1. In P , the Copeland winner is x2. Now,
with respect to P , the Copeland score of x1 (resp. x2) is 0 (resp. m − 1), hence
the result. 
�
3 Moreover, there are several ways of defining the Copeland score, all leading to the

same rule. However, this has no impact on the negative result below, as long as a
Condorcet loser has score 0.
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Discussion: The obtained worst-case bounds are rather negative: very negative
for Copeland and maximin, less so for Borda, and even less so for Harmonic.4

However, the maximin and Copeland scores make less sense as a measure of
social welfare than positional scores. Note that for maximin rule the obtained
lower bound matches the one given by Bentert and Skowron [3] (Sect. 4.3) which
means that our top-k approximation of maximin is optimal.

Now, we may wonder whether these worst cases do occur frequently in prac-
tice or if they correspond to rare pathological profiles. The next two subsections
show that the latter is the case.

5.2 Average Case Evaluation

We present the evaluation of the approximation ratio using data generated from
Mallows φ model. For each experiment, we draw 10000 random profiles, with
m = 7, n = 15, and let φ vary. Figure 6 presents the obtained results. Our
results suggest that, in practice, results are much better than in the worst case
where best results are obtained by Harmonic, followed by Borda and finally
Maximin.

Fig. 6. Mallows model: approximation ratio when n = 15, m = 7 and varying φ.

5.3 Real Data Sets

Again we consider 2002 Dublin North data (m = 12, n = 3662) with samples
of n∗ voters among n (n∗ < n) where n∗ = {15, 100}. In each experiment 1000
random profiles are constructed with n∗ voters; then we consider the top-k ballots
obtained from these profiles with k = {1, . . . , m−1}. Again, the results are very
positive (Fig. 7).

4 As Ranked Pairs is not based on scores, it was not studied here.
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Fig. 7. Approximation ratio with Dublin North data set.

6 Conclusion

In this paper we have considered k-truncated approximations of rules which
take only top-k ballots as input where we have considered two measures of the
quality of the approximation: the probability of selecting the same winner as
the original rule, and the score ratio. For the former, our empirical study show
that a very small k suffices. For the latter, while the theoretical bounds are,
at best; moderately encouraging, our experiments show that in practice the
approximation ratio is much better than in the worst case: our results suggest
that a very small value of k works very well in practice. Many issues remain
open. Especially, it would be interesting to consider top-k approximations as
voting rules on their own, and to study their normative properties.
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